LA-3674

Qs GOLLEGTION
2 o e SDUCTION
COPY

LOS ALAMOS SCIENTIFIC LABORATORY
of the
University of California

LOS ALAMOS e NEW MEXICO

The Structure of a Magnetically Driven

Plane Shock Wave in a Plasma

!

I
T

3 9338 00314 7849

I

AT

0S NAT!O|

i

IN

UNITED STATES
ATOMIC ENERGY COMMISSION
CONTRACT W-7405-ENG. 36




LEGAL NOTICE

This report was prepared as an account of Government sponsored work. Neither the United
States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accu-
racy, completeness, or usefulness of the information contained in this report, or that the use
of any information, apparatus, method, or process disclosed in this report may not infringe
privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the
use of any information, apparatus, method, or process disclosed in this report.

As used in the above, ‘‘person acting on behalf of the Commisaion’’ includes any em-
ployee or contractor of the Commission, or employee of such contractor, to the extent that
such employee or contractor of the Commission, or employee of such contractor prepares,
disseminates, or provides access to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.

This report expresses the opinions of the author or
authors and does not necessarily reflect the opinions
or views of the Los Alamos Scientific Laboratory.

Printed in the United States of America. Available from
Clearinghouse for Federal Scientific and Technical Information
National Bureau of Standards, U. S. Department of Commerce
Springfield, Virginia 22151
Price: Printed Copy $3.00; Microfiche $0.65




(]

.

00314 7849

il

il

o
o

M()SN
-

LOS ALAM

L

3 9338

-F_]

o
¥

LA-3674
UC-20, CONTROLLED

THERMONUCLEAR PROCESSES
TID-4500

LOS ALAMOS SCIENTIFIC LABORATORY
of the
University of California

LOS ALAMOS e NEW MEXICO

Report written: December 16, 1966
Report distributed: October 3, 1967

The Structure of a Magnetically Driven

Plane Shock Wave in a Plasma

by

T. A. Oliphant
Martha S. Hoyt


ABOUT THIS REPORT
This official electronic version was created by scanning
the best available paper or microfiche copy of the 
original report at a 300 dpi resolution.  Original 
color illustrations appear as black and white images.

For additional information or comments, contact: 
Library Without Walls Project 
Los Alamos National Laboratory Research Library
Los Alamos, NM 87544 
Phone: (505)667-4448 
E-mail: lwwp@lanl.gov






CONTENTS

Abstract
I. Introduction
II. The Basic Model
I1I. Transport Coefficients
Iv. Equations for Steady-State, Plane Shock
V. The Rankine-Hugoniot Conditions
VI, The Zero Magnetic Field Case
VII. Becker's Simplified Solution
VIII. Solution of the Simultaneous Equations
IX. The Nonzero Magnetic Field Case
References

Page

O O o o Wn

11
13
15
17
20






THE STRUCTURE OF A MAGNETICALLY DRIVEN,

PLANE SHOCK WAVE IN A PLASMA

T. A, Oliphant and Martha S. Hoyt

ABSTRACT

This report describes numerical calculations of the

structure of a plane shock wave driven by a transverse

magnetic field.
detail.

The basic MHD theory is described in

Progressively more difficult examples are

discussed in sequence starting from the simple Thomas

shock wave in air and ending with a charge neutral

plasma shock wave driven by a transverse magnetic

field.

I. INTRODUCTION

The purpose of the present work is to provide a
basic orientation in the methods of computing shock
structure. We will apply the methods to simple

models for air and plasma.
1

For air, we will use
the model used by Thomas,” namely a simple gas with
rigid sphere interactions. We shall treat the plas-
ma here using a very simple model, First, we as-
sume that there is no charge separation so that the
plasma moves along as a single fluid and we will
need only one momentum equation., Second, we asgsume
that the electrons and ions are always at equili-
brium at the same temperature so that we will need
only one enexgy equation.

Vi will set up the equation for the basic mod-
els in the next four sections., Then we will begin
cuusideration of our special applications in Sec-
tion VI. The ceyuence of applications will progress
from tne simplest to the most complicated case.

Since our primary interest 1s plasma rather
than air, we will set up our basic tteory for plas-
ma and in the application simply indicate what
changes have to be made to obtain the analogous re-

sults for air.

- II. THE BASIC MODEL

For our basic model for the plasma we will use
the hydromagnetic equations as obtained from lowest-
order Chapman-Enskog theory.3 We will refer to a
discussion by Burgers® for our basic equations.
Hereafter, we will designate this reference by the
letter B. Since we rule out charge separation and
temperature differences between the electronic and
ionic components, we can use the equations for the
flow of the gas as a whole. Thus we use the equa-~
tion under heading (A) on pages 128-129 of B.
Throughout this section the units are all Gaussian.
Changes will be indicated when they are made in

late sections.

The wmass.conservation law is, from (5-27)B,
Do = -
be t e =0, (2-1)
where
du,
€ = E’ (2-2)

where p is the density and U is the velocity of the
total fluid.

For the momentum congervation law we will use



(5~ 28) We drop the gravity term and, since there
is no charge separation, we algso drop the 0 Eh term,
Thus, we write
Du, Jp
—L i - & 3 = -
P ot a—-—lxj @@ x B), = 0. 2-3)

We -Jo not divide the last term by ¢ as Burgers does
because we write J in emu whereas he writes it in

esu. The pressure tensor is given by

pij = bijp + Pij’ (2-4)
where p is the scalar pressure,
p = nkT. (2-5)

For the deviator components Pij
sor, lowest-order Chapman-Enskog theory gives

of the pressure ten-

P]Lj = HEy (2-6)

where p is the viscosity coefficient of the total
fluid and

du au
.-t od 2 -
eij axj + a 3 Sije. 2-7

Thus, (2-3) can be written,

Du

p—t o .02 —5-—(;u:ij)+(.'fx§)i

Dt Bx ax 2-8)

For our energy conservation law we use (5—29)B
Using (2-6) we obtain

( P + 2 pe = L ue, €., + EEL
Dc 2 2 i 13713 axy (2-9)
-E; J; =0,

where

* — -

E, =E + (u X B)i (2-10)

%

The field Ei is the effective electric field felt by

the moving plasma. This field is related to the

current density by
*

E, = | Ji' (2-11)
vhere 1 is the electrical resistivity of the total
fluid. Thus, the last term in (2-9) is seen to be
the Joule-heating term. The current ki is related to
the magnetic field B through Ampere's law,

1 -
= Fe . 2-12
J=y=VxB ( )

According to lowest-order Chapman-Enskog theory,
the heat flux, q is given by

- wy 21 2-1
ay "axi’ @-13)

where # is the thermal conductivity of the total
fluid and T is 1its temperature, Using (2-10)
through (2-13) we write (2-9) in the form

- P
Heijeij axi (; gxi)

3
- 'n(— v x B) = 0. (2-14)

To complete our theory we need to obtain an eq-

2 3 3 e - L
t G 3 Pe -

uation for the penetration of the magnetic field

into the plasma. Combining (2-10) and (2-11) we

get
Bl
= === [E + X B 2-15)
J=3 Tl[ @©x B, (
Combining (2-12) and (2-15) we get
N x B) = 4x [E+ (@ x B)J. (2-16)
Taking the curl of both sides, we obtain
VX [NV X B)] = 4x [VXE
+9x (@xB]. 2-17)
Next, we use the emf equation,
Fa-2B ]
v XE at (2-18)
Hence (2-17) becomes
B, Ly 3
Y VX v xB]
+VX (uxB). (2-19)

Equations (2-1), (2-8), (2-14), and (2-19) consti=
tute our basic set of equations of motion.

III. TRANSPORT COEFFICIENTS

In Section II we developed the basic equations
Included in
the equations were the transport coefficients u, x,

of motion for the plasma as a whole.

and T for the gas as a whole. For the theory dis-

cugged above these transport coefficients are ob-



tained simply by adding together the contribution

from the electronic and ionic components.

Wen, +oug, 3-1)
N + e, (3-2)
M=, +7,. (3-3)

The dependence of these transport coefficlents on
the hydrodynamic variables has been given by

Spitzer.*

Hereafter we will refer to this refer-
ence as S.

An important quantity which enters into all
the transport coefficients is lnA, This quantity
is obtained in the consideration of the encounters
of the moving charged particles and is discusged in
pages 120-131 of S.

in S can be written

The expression for A derived

3/2

e

P

(3-4)

where the temperature is given in eV, and p is
given in cgs units. From this point on, all temp-

eratures will be given in eV. Here,

%
(k’ro)amAA 5

° ZZiea 7 *

(3-5)

The quantities appearing in Ao, as well as in the
constants obtained in the remainder of this section,
are summarized in Table I.

The number density of particles is obtained

from p by
e —f
n, = , (3-6)
1 m @A +VA)
n, =vag . (3-7)

For the most part we ignore VAe in comparison to Ai
in our transport coefficients.

Since the viscosity is contributed mainly by
the ions, we drop e in (3-1). The result for
The weak field

approximation By of pu is isotropic, and from (5-54)s

Ho= is given on page 146 of S.

we have

T5/2

My = Cul lnA ?

(3-8)

where
0.406 n¥ (it )>/2
c_ = 2

w1 zi e* .

(3-9)

The viscosity K, transverse to a strong magnetic

field is given by

1nA

W pRp?

where B is in gauss. Here
2 ¢

Y T
2 5 mikTo

p'.L = C N (3'10)

C (ziec)2 . (3-11)
Let us obtain a formula for the viscosity trans-
verse to an intermediate field by the following

sort of interpolation

o
A4
MeTTE (3-12)
In the strong field limit, £ > > 1, and
-t
b SF e
¥
Hence s
C 3/2
= Sw = = (——T 1:5\ . (3-13)
lJ~_L 113 [¢]
TABLE I
Physical Constants
~Symbol Quantity Value Units
ZL ionic charge number 1 for deuterium
-1
e electronic charge 4,8029 x 10 0 esu
T, 1 av tn K 11593. °k/ev
k Boltzmann's constant 1,3804 x 1.0-16 erg/°k-
particle
-24
L% atomic mass unit 1.6604 x 10 gm
B, electron mass 0.9107 X 1.0-27 gm
v valence of ions 1 for deuterium
5‘! Theoretical constant 0.225
from Spitzer, p. 143
12
Ro gas constant 0.96385Ax 10 ;Vgigsz
R Er8.
R= xﬂ gas constant pergren
A atomic number of 2.01473
b3
deuterium
m
A~ ;ﬁ' atomic number of
A the alectron
< velocity of light 2.99793 x 1010 cm/sec



Hence, (3-12) can be written

5/2
c I
1 1lnA

. (3-14)

Next, let us consider the thermal conductivity.
The relevant results are given on pages 144-145 of
S. Here the electronic contribution, Moo is pre-

dominant so we drop The weak magnetic field

i
approximation uw of n is

T5/2
"o ™ %% Toh (3-15)
where
7/2
3/2 &_(kT))
2 o ]
a0 -2o(n) ;LZZE—— . (3-16)
e

The thermal conductivity Hys transverse to a strong

magnetic field is given by

1
% =G, ah (3-17)
BT
where k
8 2
o - () <55 @19
[+ m

e

We make the same sort of interpolation here as we

did with p. Thus,
5/2
Cu “Toh
X = = SV - (3-19)
14+ 2 [T _B
C"a plnA

Next, we consider the electrical resistivity,
Since the resistive effects involve mainly the
The rel=-
evant result is given on pages 138-139 of S. We
obtain

electrons, we drop the fonic contribution.

oA
n 32

x 3/2 m%(ec)a
Cy = £
M (2k’1‘°) 2(0.582) °

(3-20)

(3-21)

Finally, we consider the mean free path. It is
given by
1
L = = (3-22)
d
but %y given by Glasstone and Lovberg® is
4
oy a2
kT
2770
Thus,
2
(Br )
4= 27ne*1nA  ° (3-24)
Thus, we write
il
£ CL olnh (3-25)
where
3 2
=T J A ™,
Cz = Irte . (3-26)

IV. BQUATIONS FOR STEADY-STATE, PLANE SHOCK

Having obtained all of our basic equations and
transport coefficients, we now specialize to the
case of a steady-state, plane shock wave traveling

in the x-direction. For this special case

Bsud, %-1)

e =8 (4-2)
and

e | © -38 o . (4-3)
Equation (2-1) reduces to

& (v =0 . (4-8)

We will now begin to compare our equations with the

1 referred to hereafter as T.

equations of Thomas,
(4-4) can easily be put into the form of (l)T by

differentiation,

L8 o du

4 &, (4-5)




We assume that we will have a driving field, 3,

directed in the z-direction, but varying only in

the x-direction. Then, (2-12) can be written

where

g ~
B=2z3B.

With the help of (4-6), we reduce (2-3) to

oudu . _dE
dx dx °?
where

and

~=i
K 3“'

(4-6)

-7

(4-8)

4-9)

(4-10)

Using (4-4), we easily put (4-10) into the form

of (Z)T.

(4-11)

Note that, although this equation is formally
identfical to (2)T, we include the additional ef-

fect of the magnetic field by the added term in

“-9).

Similarly, we write the energy equation (2-14)

in the form,

dx T d&x  8x dx 47 dx

We define the internal energy density to be

3 B
E=3P+ 8n °

and also note that
p= nkToT .

Hence, (4-12) can be written

2
3
d—(':zlpu)+P£1£+(1A-'B—g--'ﬂ(1 "'m')=0.

(4-12)

(4-13)

(4-14)

2
2
-g—;g—:-n(i—nﬁ)uo. (4-15)

This is in the form of (3)T. However, not only do
we have the altered definitions of P and E, but
additional magnetic terms as well.

Finally, for the present geometry (2-19) is

written
Lod (pdB) _d 5y = -
4y dx ( dx) dx (uB) 0. (4-16)

Our basic equations are now (including the equation
of state) (4-4), (4-8), (4-13), (4-14), (4-15), and
(4-16).,

V. THE RANKINE-HUGONIOT CONDITIONS

The first integrals of the equations of Sec-
tion IV lead to the Rankine-Hugoniot conditionms.
(4-4) and (4-8) are integrated just as in the case
of Thomas to give

Pu = a, (5-1)

au + P = b, (5-2)

However, (4-15) is not quite so easy to integrate.
Skipping to (4-16), we obtain

3 dB _ - -
a7 dx uB = d, (5-3)
In integrating (4-15) we have to make use of (5-2)
and (5-3). We obtain

R N _uB®_ Bd _ -
uE + ub 7 au +q Gx " 4x = C * (5-4)
If we set B = 0, these equations reduce exactly
to the corresponding results of Thomas. We now

write the relation

nkT_ = PR , (5-5)

where n is the density in atoms/cc, k is Boltz-
mann's constant in erg/OK, p is the density in
grams/cc, and R is the gas constant in exg/(gram eV).
Making use of (5-5), we write (4-14) as



P=pPRT . (5"6)

Making use of (2-13) and (4-9), we write (5-2)
through (5-4) in the form,

~du | T,B -

g au + a® + an b, (5-7)
dar _ 3 L _uB® _Bd

" 2 a®T + ub 2 ad® 8t " 4x ~C (5-8)

.48 _ -

=Bt d . (5-9)

Let us now consider a schematic plot of the

density across the shock wave in Pig. 1.

t Upstream
(Py 51y ,Ty,By)

Dowvmstrean
(P2 ,u3,Ta +Ba)

X =

Fig. 1. The density profile of a shock wave.

Since we are talking about the time~independent
form of the shock wave, we are automatically con-
sidering ourselves to be located in the frame of
reference traveling with the shock wave. The (up-
stream) fluid in the ambient state seems to be
flowing to the right into the shock wave with vel-
ocity uy > 0. If the ambient fluid is actually at
rest, then uy is equal to the magnitude of the vel-
ocity of the shock wave. Of course, the actual
shock wave would be traveling to the left, From
(5-1), we see that pu is the same for any value of
%x. Thus,

fU = Py = Pouz = a. (5-10)
For convenience we will often leave the constant a
in the other equations., In the region away from the
shock wave, u and T are constant so that the left-

hand sides of (5-7) through (5~9) vanish. This al-
lows us to evaluate b, c, and d.

b=au +a@t + L (5-11)

t]
1 8n

uB® B.d
-7 ad - A 5-12)

3
c--z‘a@'l‘i+bu:L 1 i’

d = -u;By, (5-13)

where i is equal to either 1 or 2. We can there-

10

fore write (5-7) through (5-9) in the form
B - 83

o a-u) +aR %-% ot (5-18)
w o2 QR (rm) + bumu) - 7 a(P-dd)

; unz;uiBzi -L @), -19)

14, 8- us,. (5-16)

4y dx i1

Equations (5-10) through (5-13) are equivalent to
the Rankine-Hugoniot relations comnecting the var-
iables (u;,p1,T;,B1) ahead of the shock to those
(uz,p3,T2 ,Bz) behind the shock wave. Connections
with the more usual forms of these relations are
given below., Equations (5-10) and (5-14) through
(5-16) describe the behavior of the variables
(u, p, T, B) as we cross the shock front.

To obtain the more usual forms of the Rankine-
Hugoniot relations, we rewrite (5-11) and (5-12) in
terms of pressure and energy variables

b = au, + Pi’ (5-17)

i
1
c=u (B +P) + 5 ad) . (5-18)
With a little algebra we can show that these rela-
tions are equivalent to

Po - P = pu; (0 - w), (5-19)

Pa(u-wg) = Ay [&. - e +'%' (ul-\.u)z] , (5-20)

E
e = 4 (5-21)
i P

i
is the specific energy. With suitable changes of
definition we see that (5-10), (5-19), and (5-20)
are formally equivalent to the Rankine-Hugoniot
relations as given by Cole.® By some further manip-
ulations, we can write the energy equation in the

following form.

2
1
L (8) « [+t o - R)

= a% + 25 (B14+P3) . (5-22)

Now, let us assume that we know the ambient condi-



tions. Then, let us assume a shock strength, f,
defined by
=i, (5-23)
1 .

It is then clear that (5-22) gives us the means of
calculating the quantity

> = B2

o= . 5-24)
0y (

It is, of course, easier to assume ? and calculate
P. The velocity u; which 1s positive and of the
magnitude of the shock speed is given by

- /22 (P2 - P1) .
u = Yo (o - (5-25)

The downstream velocity, up, is given by (5-10)

which we write as

w = ‘% u . (5-26)

Finally, we have

Bo =53, . ‘ (5-27)
Py

Equations (5-22), (5-25), and (5-26) with B, set to

zero agree with the y-law relations with y = 1-2,

The details of the comparison are given in Section

VL.

VI. THE ZERO MAGNETIC FIELD CASE

We will see that certain scaling propertieé
occur as soon as we discard the magnetic field.
For a perfect y-law gas with no magnetic field,
Bethe” writes (changing notation appropriately)

pe _ (y+ Dpz + (y - Vp;

Py, (v - Dps + (y + p; °* (6-1)
Ky + Dpa + (y - )p
ul-v 291 1 > (6-2)

——2(pa - p1)

U - u o= 2 . (6-3)
V291 [(+Dpz + (v-D)p;]

Setting By equal to zero in (5-22), (5-25), and

(5-26) and performing some simple manipulations,

we obtain

o
w
+

2. 6-4
o s (6-4)

¥
4
£
-
-

&4
w = —1”—3%-1-5- . (6-5)

~Pa -~ p3 (6-6)

Jg‘- (4pa + p1)

Setting y = 1% in (6-1) through (6-3), we obtain
(6-4) through (6-6) so that the results of Section

V reduce appropriately to the perfect gas case.

U = ug =

The shock strength reduces to

~=2&. _
P P 6-7)

In the remainder of this section we will use (6-1)
through (6-3) instead of (6-4) through (6-6) in or-
der to facilitate comparison with previous work for
gases of general y., However, we must bear in mind

that for the plasma case y is understood to be
equal to 1%, From (6-1) through (6-3), we obtain

B+ D P+ (y-1)

P 91 ~ ) (6'8)
G-Dp+(y+1)

u =‘I§§1 [+ 15 (v-DI], (6-9)

Y=o 2 - 1) . (6-10)
1 Y+ p+(y-1

From the equation of state (5-6) we obtain

TE%&=E. (6-11)

T op

If the problem can be scaled appropriately, then we
need not specify ambient conditions such as
(P1,P1,T1), but may represent a whole class of prob-
lems in terms of scaled variables by choosing only
the shock strength, ;. We will then be able to ex-
press a multitude of results involving the three
ambient parameters by the same scaled curves. We
will show that air and plasma (in our simple model)

can be scaled in this way.

For zero magnetic fields, (5-7) and (5-8) re-

duce to

~ du _ I_ -

B3y = au + a®R o b, (6-12)
dT _ gg& T _ 1 2 _ -

“ax Ty -1 +ub -3 au c. (6-13)

11



We have inserted a general y here which gives a-
greement with the equation of Thomas. The con-

stants can be written

a=pu (6-14)
Ti
b=alu +@—] , (6-15)
N Y1
a®T
- — L -
¢ =t by -3 ad]. (6-16)

Let us introduce the scaled velocity, w, and temp-

erature, 6, defined by

0, (6-17)

3
(9) 6. (6-18)
a

We can now write (6-12) and (6-13) in the form

T =

5%:—=w+§-1, (6-19)

The factor f defined by Thomas is given by

£y ga . (6-21)

x
L
Hw

In (6-20) and (6-21) we have used the number of
degrees of freedom, N, of the gas atoms which is
related to y by

2
vy=1+ N (6-22)

Here f can be anything since we have as yet speci-

fied no relation between » and E.

Now, let us scale our x-variable in terms of

the mean free path, £.
X = £5,. (6"23)

(6-~19) and (6-20) then become

(F_) @ .8, (6-24)

12

%f(ﬁ)%. o-Lfa-w?+a], (29

a=3§§--1 . (6-26)

To be able to scale (6-24) and (6-25), we must
write the factor I/af in terms of the scaled varia-
bles w and 6. Thomas has used the hard-sphere mod-
el for ait. The model is discussed by Chapman and
Cowling (Reference 2, 791 and p. 101). The ex-

pressions obtained for ﬁ and £ in this model are

v )
~ & _o mkT
i35 o (6-27)
and
g=—1 (6-28)
Cornd

where ¢ is the colligion cross section and Vo is a
dimensionless number 0.,998. From (6-27) and (6-28)

we obtain
E 4 2 !9
at = 3 Vo‘/: w (6-29)

Thus, the factor appearing in (6-24) and
(6-25) 1s dimensionless and allows a convenient
scaling. From Section III we have, for the case of

zero magnetic field,

5/2
Fetc I (6-30)

and
L= ¢, oo (6-31)
Thus,

~ c i
g4 e IT -
alt 3 u ° (6-32)

~ %
B ]
at T Co (6-33)

where C is the dimensionless constant,

C
c=2 B L _;sns (6-34)

3¢ Y&



For air,

4 2
c-svﬁ = 1,0617 .

Hence, we write the differential equations for both

(6-35)

together in the form

w ds

5 -1, (6-36)
%fc g%:e-%[(l-w)a-i-a]. (6-37)

The differential equation for the integral curve in
(w,9) space is obtained by eliminating ds between
(6-36) and (6-37).

6 - é [ -w?+0a]

= =) >3

an T 3f w® -w+ 86 °

(6-38)

Now, let us show that, once we specify ;, our
scaled solution is completely determined. From
(6-15), we have

a_ u -
b-E + QT (6-39)
Therefore, using (6-17), we write
2
a = u -
w, = w TN (6-40)

Substituting (5-6) and (6-22) into (6-9),we obtain

RTI: ~
ul—_-‘/T [+ Dp+ 1] .

(6-41)
Substituting (6-41) into (6-40), we obtain
N+ DP+ 1
© = + 1 ~+ 1 . (6-42)
(N+ D)(p + 1)
From (6-10), we get
NG -
Wwg = 1 - ~ Wy (6'43)
N+ Dp+1
Directly from (6-19), we obtain
6, =w;(1 - w) . (6-44)

Therefore, from ; we can calculate w and 8 both be-
fore and behind the shock wave.

Using (6-8), (6-10), and (6-11), we can calcu-
late 'f)', :, and T in the scaled problem., To get

back to the unscaled solution, we need to specify
two out of the three ambient quantities (p,,0;,T;).
The third ambient variable is then given by (5-6).
From the definition of (3,3,3") we then immediately
obtain (pp,f2,Ts). The constants a, b, and c are
then obtained from (6-14), (6-15), and (6-16). We
can now plot the unscaled solution using the defi-
nitions or the scaled variables and other simple

relations which are summarized as follows:

a = Pjuy (6~45)
b =auy +p; , (6-46)
x = 43 , 6-47)
welo, (6-48)
Ll bya -
T=z P o, (6-49)
a
P = ) (6"50)
p=poRT, (6~51)

VII. BECKER'S SIMPLIFIED SOLUTION
As quoted by Thomas,* Becker® shows that when

AN+2 -
f=3 N ’ (71)

a great simplification occurs. Namely, the solu-~
tion to (6-41) takes on the simplified form

6= [wywg - @, +wg - D], (7-2)

1
Wy + Wy

Using this relation, we eliminate 8 from (6-39),

obtaining
RS P T S
C"(‘”x + wa){wwa - W +wg - D]
' (7-3)

Thus, we have a single differential equation in-
stead of the two simultaneous equations, (6-39)
and (6-40). We can integrate (7-3) numerically.
There is a slight complication with regard to the
initial value of w. If we take w =w, or w = wa,
we must start our integration at some indeterminate
large distance from the shock wave, and this is

clearly unsatisfactory. Instead, we must find an

13



approximate solution to (7-3), valid when w deviates
from wi(i = 1, 2) by a small, but finite, amount.

Thus, we expand (W) about wi

- W o
ow) =B |, o (7-4)
where we have used the fact that w@ui) = 0. Using
the abbreviation
olw)
<pw = o0 qu‘ui ’ (7-5)
we have
© 6. (W - we)

W = , (7-6)
CV(“’:L +wa)lwywe ~ @y +wg - Duf]

where
+1l, i =1
€ = . -7)
-1, i =2
Equation (7-3) becomes
dw
i W - wi) @, (7-8)
The solution to (7-8) is
(ou,s)
wo=w, 1 - eiC . (7-9)

Now, suppose we wish to start our integration at
the poiunt, 84y at which w deviates from wi by some
fraction, Y, such as, for example, Y = 0.001, We

simply set

- log X (7-10)

Thus, we carry out our integration numerically for
increasing (decreasing) s using the exact form
(7-3).

wj(j ¥ 1). To do this we must set up a reasonable

We integrate until w has approached

mesh. A rough estimate of the shock thickness is
obtained as follows. We define the center of the
shock front to be at the point on the w vs. s
Then, using (7-3) with w

set equal to &, the shock thickness is given by

curve at which w = w,

14

= (il _ 2y 98 -
L () we) W oo
(0202 (25 0 - (- 1)@ ¥
¢ @, 5) G va) » (7011
where
. Wy twp ’
w=—u . (7-12)
For our Seginning s value, let us take ‘
ds
sy = 8o £ K@y mwa) GE 4o, (7-13)

where K is an arbitrary number of the order of uni-

ty, say 4. Por N mech intervals we then have the
increment
(s, = 8]
bs =y~ | (7-14)

We are thus free to carry out our integration using
Runge-Kutta, or some very simple scheme such as
w

=w +bs £@) . (7-15)

o+l
Computations using (7-15) have been carried out on
the Maniac-II.
results will be discussed at the end of this

The cases of alr and plasma and the

section.

We will now discuss the validity of (7-1) for
air and for plasma. The factor f can be obtained
experimentally for air by measuring ﬁ and x.
Quoting Thomas, we have

£ = 1,95 .

air (7-16)

For plasma we use (3-8) for p and (3-15) for x.

5/2

~ &4 T
B=3C, wmA (7-17)

T5/2
mm G Y (7-18)

Thus, we obtain

£ W (7-19) '
plasma N®R Cm ¢

which is a dimensionless constant.



For air, N = 5, so that

wis

N.'t:_z - £3‘- . %: 1.867 , (7-20)

which is close to (7-16), so the simple approxima-
tion is seen to be good for air. On the other hand,

for plasma

4
B~
n

+2 4 5 _
N =3 2,222 ,

(7-21)

wies
w

which does not agree well with (7-19), so the sim-
ple approximation is quite bad for plasma. Further-

more, generalizations to more complicated shock

wave calculations will depart from the simple
approximation, Therefore, in the next section we
will solve the pair of simultaneous differential
equations without the simplification of (7-1).
Using the methods discussed in this section,
we have calculated the shock wave structure for air
and have plotted the results in Figs. 2 and 3. 1In
Fig. 2 we give a plot which compares with Fig. 1 of
Thomas. The straight line is drawn through the
point w = @ on the curve in Fig. 2 and is adjusted
to have a slope which satisfies (7-11). A glance
at Fig. 2 indicates that the straight line gives a
good rough estimate of the shock thickness. Since
the Thomas approximation is not good for plasma, we
will not discuss the plasma shock structure in thisg

section.

VIII. SOLUTION OF THE SIMULTANEOUS EQUATIONS

As mentioned in the previous section, we will

be concerned, in general, with values of £ for

0.9——T—T—t+—T—— T T
0.8 1
o7t ]
w
06} 4
o) ]
04+ . 4
o3 —— & T o i
-0 -8 -6 -4 2 [¢] 2 4 6 8
s
Fig. 2. The scaled velocity w vs. the scaled dis-

tance s for a shock wave in air, The pressure

ratio is 4.4981 as in the second case of Thomas.'

which (7-1) doesn't hold. 1In general, there is no
simple analytic golution to (6-39), and we have to
go back and solve (6-37) and (6-38) simultaneously.
We write them in the form

[
2 - 0w, ,

(8-1)
- dé
-a:- ‘f(ﬂ),e) ’ (8-2)
where
Plo,e) = 2= (w +2. 1) , (8-3)
c w
Yw,e) = e fo -2 [a - o2 +aJE (8-4)
Y ) N

The theory of simultaneous, nonlinear differential
equations contains complications not found in the
theory of single nonlinear differential equations.
These complications are inevitable in more refined
shock structure calculations. The basic theory is
discussed by Minorskf’in his treatise on nonlinear
mechanics., Of primary importance in this theory is

the idea of singular points. If we combine (8-1)

. and (8~2) into the form

(8-5)

Glg
[}
< Ig

we get a picture of what we mean by singular points.
A singular point Gni,ei) is a point‘at which ¢ and
Y both vanish. Thus, we see that the asymptotic
limits of the shock wave occur at the singular
points q»i,ei), (i = 1,2), corresponding to the far
upstream and far downstream, respectively,

We attack (8-1) and (8-2) by a linearization
in the neighborhood of a singularity as was done in

022
4 T LS T LS T T T T T T L1 T 11

Q201 ’ 1
Q.i8F ) 1
Q.l6} 1

.14 1

0l2

90 6 6 4 2 6 2 4 6 8

Fig., 3. The scaled temperature 9 vs. the scaled
distance for the case corresponding to Fig. 2.
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the previous section. We will leave the index i
undetermined so that either the upstream or down-
stream singular point can be selected as a starting
point for integrating the simultaneous differential
equation. More will be said about this later.

We write
o=@ -w) @ +(6-6) 9, (8-6)
Y= -w) ¥ +(6- 8,) ¥ge 8-7

For simplicity, let

y=w -w, (8-8)
z2=6-6, . (8-9
Then (8-1) and (8-2) become
Q‘ = -
ds = Y% T o2, > (8-10)
L 2 (8-11)
ds W [¢]
We look for solutions of the form
y=A &S, (8-12)
z =3B s, (8-13)

Substituting (8-12) and (8-13) into (8-10) and
(8-11), we obtain

=0, (8-14)

where the eigenvalues, A, are obtained by setting
the determinant of the matrix in (8-14) equal to

zero. Thus, we obtain

-]
@, + ¥ iV«pu, + YT+ 4pgY - @ ¥g) .

ki = 2

(8-15)

For each eigenvalue h+ , we obtain an eigenvector

16

From (8-14) we see that the constants A+ and Bi

are related by

. (8-16)

We choose our constant A in the following way.
From (8-12) we write our solution in the form

A8
w = wi +A, C * .

+ 8-17

>
If A € 0, we have a growing (decaying) exponential,
and, hence, we are in the upstream (downstyream) re-

gion, We have

Ais
W o=, 1 - eic ,

where

(8-18)

+ 1 for i =1
(8-19)

-1 for L =2

Our beginning value of s is determined by setting

kis
c*%=Y (8-20)
or
=log Y .
o - A ] (8 21)

which is analogous to (7-10).
We then obtain w(so) by using (8-18). Comparing
(8-17) and (8-18), we see that

Ay = oo (8-22)
Thus, from (8-16),
M
B, = - ? € s (8-23)
]
and (8-13) is written
A, - A.s
- o4 W i
o =6, m e, C s (8-24)

e

which we use to obtain 9(80). This gives us the
means to start our integration at either singular
point,

The question arises whether there is any dif-
ference in gtarting from one singular point or the
other. Indeed there is, and this decision involves



certain general basic properties of such singulari-
ties. These properties are discussed fully by
Minorsky.? Consider the (w,8) plane as illustrated

in Fig. 4.

(wpﬁ)

] p AN

Fig. 4. The integral curves in the W,8) plane.

As the variable s moves from -» to +=, it acts as a
parameter of a parameterized arc (Curve a) which
moves from (w,,68;) to (w2,62)« Such an arc is a
solution to (6-39) and is called an integral curve

in thelcn,e) plane.

The parameterization in terms
of s is the complete solution to the pair (6-37)
and (6-38) for the boundary condition of our prob-
lem. There are other solutions to this pair of e-
quations which result from other boundary condi-
tions. For example, it may be possible for solu-
tions to start at or near (w,,5;) and go quite far
from (wp,82) as illustrated by Curve b of Fig, 2,
Thus, it
is expedient to start our numerical integration at
point (W2,62) instead of (w;,6;).

Indeed this will happen in our problems.,

1f we start at

(wy,6;,), the slightest numerical error will cause us
to miss (wa,62) by a considerable margin. By the
same token, the error diminishes as we go from

wz,02) to (w,,61).

case) to discover an appropriate direction of inte-

It is often possible (as in our

gration by trial and error. This is not generally
true, however.
Carrying out the differentiations indicated in

(8-6) and (8-7), we obtain

1
2w
C 9i 1
1

Py = Cﬁ s

1
¥ = EN: - iei- -I%[(&ni- b (wi- 1)+ a]E ,  (8-27)

- 1) (8-25)

(8-26)

w, (L - wi)2 +
0~ 3 ¢ N6
3 foy L

The simpltaneous equations were first solved

¥ +-1]. (8-28)

for air. As stated in Section VII, the Thomas
Indeed the

curves obtained using the simultaneous equations

approximation should be good for air.

fall close enough to the curves plotted in Figs., 2
and 3 so that the difference is barely detectable
on the graphs. Therefore, we give no new plots for
air. However, the situation is quite different for
plasma for which the curves obtained are plotted in
Figs. 5 and 6. The structure is quite different
from that obtainable with the Thomas approximation.
There is a dual structure to the w(velocity) pro-
file as shown in Fig. 5. The sharp falloff near
the right end of the curve arises from the viscos-
ity dissipative effect. The much more diffuse ef-
fect noted over more of the curve arises from the
thermal conductivity which allows a thermal wave to
propagate far ahead of the viscosity-dominated
shock front. This effect was also noticed in run-

ning the numerical program for the S-pinch.1° The

* dual structure just described is ruled out in the

Thomas approximation.

IX. THE NONZERO MAGNETIC FIELD CASE

If the magnetic field does not vanish, then
all the scaling properties introduced starting in
Section VI are lost, We must return to Eqs. (5-14)

through (5-16) which can be written in the form

du

dx = (P(U: T: B)s (9'1)
g‘;% = Y(u, T, B), (9-2)
% = X(u’ T) B)) (9'3)
where
T\ B-B°
©(u,T,B) = é [a(u-ui) + aa(§ - -u—:-)+ 8“1],(9-4)
¥(u,T,B) = i [% AR (I-T)) + b(umu) - 3 a(e® )
(9-5)
- —-—-(uBa-uiBi)- L @ -38)
8n 41 i
x (u,T,B) = %’5 (B - uB,). (9-6)
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Fig. 5. The scaled velocity w vs. the scaled dig-
tance s for a shock wave in plasma. The Pressure
ratio is 4.4981 as in the case of air.

Equations (9~1) through (9-3) can be combined in
the form

du 4T _ dB

© v x 9-7)

The singular points (ui’Ti’Bi) occur where the de-
nominators in (9-7) all vanish.
Linearizing about the singular points, we have

o= (u-~- ui)¢h + (T - Ti)¢& + (B - Bi)¢5’ (9-8)
¥= (u- ui)‘?u + (T - Ti)‘!T + (B - Bi)YB, (9-9)
B = (u - ui)xu + (T - Ti)xT + (B - Bi)xB' (9-10)

—-
Let us introduce the vector y leaving i understood.

i
y=|T- T, |, (9-11)
B _B,
and the matrix,
wu @T ¢5
G = Yu YT YB . (9-12)
Xy X Xy

18

012 — T 7T T T T T T T T T
Ol - ~
0.10- .
Q.09+ .
0.081~ .
0.07- -1
0.06 -
oosl L o o+ oo4 gy oy g
-240 -200 -160 -l120 -80 -40 o]

Fig. 6. The scaled temperature & vs. the scaled
distance for the case corresponding to Fig. 5.

Then our set of differential equations (9-1) through
(9-3) can be written

s

g-:f =Gy . (9-13)
We look for solutions of the form
7 =ve*, (9-14)

where v is a vector independent of x. The eigen-
value equation is

det (Sijk - Gij) = 0, (9-15)

We find eigenvalues from the roots of the cubic
equation (9-15), We label the eigenvalues with a
subscript, ki(i = 1, 2, 3). This allows us to find

the corresponding eigenvectors, v Thus, we have

i.
the linearized solution

- - kix

y=ve .

(9-16)
Carrying out the differentiations indicated in
(9-8) through (9-10), we obtain
T  1lap
Gi=op =2 (g;—);gg (9-17)
[ [




Gm‘%“i{"é%%' (9-18)
Gm-%.ia-é%%, (9-19)
G =Yu-;1:(b au%-);lzgﬁ (9-20)
Gor =Xy = é%ﬁ ) %ﬂ %% ! (9-23)
Gaz = Xp = ‘%ﬂg% ) (9-24)
Gaa=xB-5'}t\—u-% gﬁo (9-25)

To get a simpler calculation let us make the
physically unrealistic, but mathematically simpli-
fying, assumption that the transport coefficients
have no magnetic field dependence. Furthermore,
let us assume that £nA does not vary appreciably.

We then have for the matrix elements, G

1y’
G =0, =2 (1 - -6‘!}) , (9-26)
u
a® _ 3 (9-27)
Glz = (P.r = ui: 2T °
- - B (3-28)
Gis = @y s
T
Gzl=‘l'u=% (b-au-'g%), (9-29)
5
Gez = ¥y = 3;? -5 (9-30)
Goo = ¥, = - LEL A (9-31)
Gal = Xu = -l‘v?]_B 3 (9-32)
Goz =Xy = O (9-33)
o bmu
Gza = Xg = o (9-34)

We have run numerical examples with a nonvanishing
magnetic field using Eqs. (9-1) through (9-3). For
small magnetic field ( < 10 gauss ), the results

agree with Figs. 5 and 6. In Figs. 7 through 9 we
show the results with an upstream asymptotic mag-

netic field of 100 gauss. As we see in Fig., 9, the
downstream magnetic field has been compressed to

> 240 gauss. The effect of the magnetic field is
most easily seen in Fig., 7. The sharp portion of
the shock front is smoothed out somewhat by the
diffugsed magnetic field.

22 T | T T —
20+ .
1.8 B
16 .
1] — -
{4
.
r— -
12 B
1x108 4
9x10°
1 | | 1 1 1
-06 -0.8 -0.4 -03 -Q.2 «0.1 o Ql
b 3

Fig. 7. The actual velocity u vs. the actual dis-
tance x for a shock wave in plasma with a magnetic

field, The net (plasma plus field) pressure ratio
is 4.4981,

0.8~ -1
T

0.7t —J
06} -
[>X.]

04 ! 1 1 L 1 1

06 08 04 03 02 -0 [+) 0.1
3

Fig. 8. The actual temperature T vs. the actual
distance x for the case corresponding to Fig. 7.
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Fig. 9. The transverse magnetic field B vs. the
distance x for the case corresponding to Fig. 7.
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